Multiple Imputation and Posterior Simulation for Multivariate Missing Data in Longitudinal Studies
نویسندگان
چکیده
منابع مشابه
Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies.
This paper outlines a multiple imputation method for handling missing data in designed longitudinal studies. A random coefficients model is developed to accommodate incomplete multivariate continuous longitudinal data. Multivariate repeated measures are jointly modeled; specifically, an i.i.d. normal model is assumed for time-independent variables and a hierarchical random coefficients model is...
متن کاملMultiple Imputation for Missing Data
Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...
متن کاملHot Deck imputation for multivariate missing data
Fractional hot deck imputation, considered in Fuller and Kim (2005), is extended to multivariate missing data. The joint distribution of the study items is nonparametrically estimated using a discrete approximation, where the discrete transformation also serves to define imputation cells. The procedure first estimates the probabilities for the cells and then imputes real observations for missin...
متن کاملMultiple imputation approaches for the analysis of dichotomized responses in longitudinal studies with missing data.
Often a binary variable is generated by dichotomizing an underlying continuous variable measured at a specific time point according to a prespecified threshold value. In the event that the underlying continuous measurements are from a longitudinal study, one can use the repeated-measures model to impute missing data on responder status as a result of subject dropout and apply the logistic regre...
متن کاملMultiple Imputation of Missing Composite Outcomes in Longitudinal Data
In longitudinal randomised trials and observational studies within a medical context, a composite outcome-which is a function of several individual patient-specific outcomes-may be felt to best represent the outcome of interest. As in other contexts, missing data on patient outcome, due to patient drop-out or for other reasons, may pose a problem. Multiple imputation is a widely used method for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2000
ISSN: 0006-341X
DOI: 10.1111/j.0006-341x.2000.01157.x